Puzzle
4 minute read

Ponder This Challenge - April 2020 - COVID-19 outbreak

This month's challenge is inspired by the COVID-19 pandemic.
Suppose that the world has five cities and they are all connected to one another as depicted by the five-verticed graph in the following picture:

Let's assume that the infection passes daily along the edges. So, if on day t, "D" is infected and "C" is healthy, then "C" has a 10% chance of getting infected, by "D", on day t+1.
If "A" is infected at time 0, after ten days, there is about a 29.16521896% probability that all five will be infected.

Find a graph with no more than eight vertices that gives a probability of 70.00% (accurate to the second decimal digit after the decimal point) of all cities/vertices being infected after ten days.
Give your answer as an adjacency matrix.
For example, the adjacency matrix of the graph depicted above is

01110
10001
10010
10101
01010

Bonus '*' for getting the closest to 70% in 19 days; and ’**' for getting even closer. Current best is less than 1.9E-7 away from 0.7.

Solution

  • We were seeking the answer of Day 19, where writing PT (Ponder This):

    01110111
    10110010
    11010010
    11101000
    00010100
    10001000
    11100010
    10000000
    

    gives a solution of 0.7000146451.
    However, we've also accepted solutions that give ~70.007% after 10 days, such as:

    01101010
    10000001
    10010010
    00101001
    10010100
    00001010
    10100101
    01010010
    

    Benjamin Lui found a 69.995% solution with only seven vertices:

    0111000
    1011110
    1100100
    1100100
    0111011
    0100101
    0000110
    

    Alper Halbutogullari was the first to find a solution that after 19 steps gets to ~70.0000865%:

    01101010
    10000001
    10010010
    00101001
    10010100
    00001010
    10100101
    01010010
    

    Florian Fischer sent us a drawing (thanks)

    Haye Chan found the best approximation (69.999981%) for seven cities and 28 days:

    0000100
    0001111
    0000111
    0100110
    1111000
    0111000
    0110000
    

    and Arthur Vause found a solution of 70.000002195% for 9 cities and 34 days:

    000000010
    000010101
    000101101
    001001100
    010000011
    001100010
    011100001
    100011000
    011010100
    

    Thanks to Alok Menghrajani for his writeup.

Solvers

  • **Uoti Urpala (30/03/2020 11:16 AM IDT)
  • *Alper Halbutogullari (30/03/2020 04:15 PM IDT)
  • JJ Rabeyrin (30/03/2020 05:08 PM IDT)
  • **Bert Dobbelaere (30/03/2020 07:39 PM IDT)
  • Lorenz Reichel (30/03/2020 10:09 PM IDT)
  • *Latchezar Christov (01/04/2020 04:05 PM IDT)
  • Willem Hendriks (01/04/2020 09:19 PM IDT)
  • Mathias Schenker (01/04/2020 09:37 PM IDT)
  • **Glauber Guarinello (31/03/2020 05:52 AM IDT)
  • *Collin Pearce (02/04/2020 02:51 AM IDT)
  • Henrique Fiuza (02/04/2020 03:07 AM IDT)
  • **Deron Stewart (02/04/2020 03:10 AM IDT)
  • *Anders Kaseorg (02/04/2020 06:35 AM IDT)
  • Graham Hemsley (02/04/2020 12:23 PM IDT)
  • Guillermo Wildschut (02/04/2020 02:41 PM IDT)
  • Lorenzo Gianferrari Pini (02/04/2020 07:09 PM IDT)
  • *Joerg Schepers (02/04/2020 11:01 PM IDT)
  • Eden Saig (03/04/2020 01:28 AM IDT)
  • *Todd Will (03/04/2020 02:06 PM IDT)
  • Reiner Martin (04/04/2020 03:15 AM IDT)
  • **Arthur Vause (05/04/2020 09:35 AM IDT)
  • *David Greer (05/04/2020 01:53 PM IDT)
  • **Dimas Ramos (05/04/2020 06:48 PM IDT)
  • Tyler Mullen (06/04/2020 03:38 AM IDT)
  • Paul Revenant (06/04/2020 10:46 AM IDT)
  • Li Wang (06/04/2020 01:52 PM IDT)
  • Clive Tong (06/04/2020 08:12 PM IDT)
  • *Dan Dima (07/04/2020 12:10 PM IDT)
  • Benjamin Lui (07/04/2020 05:01 PM IDT)
  • Erik Hostens (07/04/2020 11:09 PM IDT)
  • **Kang Jin Cho (08/04/2020 12:13 PM IDT)
  • **Oscar Volpatti (08/04/2020 05:09 PM IDT)
  • *Chris Shannon (08/04/2020 11:13 PM IDT)
  • *Khaled Fayed (10/04/2020 04:22 AM IDT)
  • **Vladimir Volevich (10/04/2020 09:26 AM IDT)
  • **Bertram Felgenhauer (10/04/2020 11:21 AM IDT)
  • Mathieu Roget (10/04/2020 12:14 PM IDT)
  • Keith Schneider (10/04/2020 05:23 PM IDT)
  • **Haye Chan (11/04/2020 01:21 PM IDT)
  • *Andreas Puccio (11/04/2020 05:30 PM IDT)
  • *Tommy Pensyl (12/04/2020 06:30 AM IDT)
  • *James Dow Allen (12/04/2020 03:02 PM IDT)
  • *Walter Schmidt (12/04/2020 03:45 PM IDT)
  • *Nyles Heise (13/04/2020 07:03 AM IDT)
  • *Walter Sebastian Gisler (13/04/2020 09:43 AM IDT)
  • **Stephen Herbert Jr (13/04/2020 02:46 PM IDT)
  • Daniel Bitin (13/04/2020 05:09 PM IDT)
  • *Greg Janée (13/04/2020 10:55 PM IDT)
  • *Yongxing Jim Wang (14/04/2020 02:56 AM IDT)
  • *Jacoby Jaeger (14/04/2020 06:09 AM IDT)
  • Victor Chang (15/04/2020 07:10 AM IDT)
  • *Andrew Mullins (17/04/2020 10:20 AM IDT)
  • John Goh (18/04/2020 08:23 PM IDT)
  • **Florian Fischer (21/04/2020 01:36 PM IDT)
  • *Yuxuan Shui (20/04/2020 12:47 AM IDT)
  • Shouky Dan & Tamir Ganor (20/04/2020 09:38 PM IDT)
  • *Marco Bellocchi (24/04/2020 09:27 AM IDT)
  • Stefan Wirth (24/04/2020 05:59 PM IDT)
  • **Alok Menghrajani (24/04/2020 07:16 PM IDT)
  • Alex Fleischer (24/04/2020 10:37 PM IDT)
  • *Jonah Mann (25/04/2020 03:31 PM IDT)
  • Diana Gornea & Bogdan Posa (26/04/2020 01:28 AM IDT)
  • Pern Jie Quah (26/04/2020 04:21 AM IDT)
  • Jim Clare (26/04/2020 05:08 PM IDT)
  • *Dipto Thakurta (26/04/2020 09:02 PM IDT)
  • Hugo Pfoertner (27/04/2020 04:25 PM IDT)
  • *David Friedman (27/04/2020 06:17 AM IDT)
  • *Dieter Beckerle (27/04/2020 07:32 AM IDT)
  • *Stanislav Grudnitskiy (28/04/2020 05:08 PM IDT)
  • *Karl D’Souza (28/04/2020 11:04 PM IDT)
  • *David F.H. Dunkley (30/04/2020 12:49 AM IDT)
  • Radu-Alexandru Todor (30/04/2020 01:04 AM IDT)
  • Ken Dsouza (30/04/2020 08:09 AM IDT)
  • Sebastian Bohm & Martí Bosch (30/04/2020 10:49 AM IDT)
  • Kai Guttmann (30/04/2020 06:48 PM IDT)
  • *Paolo Farinelli (30/04/2020 09:37 PM IDT)
  • **Li Li (01/05/2020 07:54 AM IDT)
  • *Daniel Chong Jyh Tar (01/05/2020 09:45 PM IDT)
  • Ben Roberts (02/05/2020 09:26 AM IDT)
  • Fabio Negroni (19/05/2020 08:31 AM IDT)
  • Alessandro Marzo (19/05/2020 01:39 PM IDT)
  • Reda Kebbaj (24/05/2020 12:55 AM IDT)

Related posts