Ponder This Challenge - February 2026 - Blot-avoiding backgammon strategy
- Ponder This
Ponder This Challenge:
Suppose we have a large number, n, of parts and know at least one is defective. If we can test any number of parts at once (learning whether they are all good or at least one is defective) then it is well known that a binary search will identify a defective part after log2(n) tests.
This month's puzzle concerns a variation on this problem in which the defective part only fails intermittently. Assume when the bad part is tested (by itself or with other parts) it fails half the time and passes half the time. The following questions concern how many tests on average it takes various algorithms to identify a single defective part out of a large number n.
You should ignore any lower order terms arising from the fact that you can only test integral numbers of parts at once. Express the answers as C*log2(n) where C is a constant given to 4 decimal places (ie 1.0000 for the original problem).
As usual we request that you only submit answers you have worked out yourself.
We will post the names of those who submit a correct, original solution! If you don't want your name posted then please include such a statement in your submission!
We invite visitors to our website to submit an elegant solution. Send your submission to the ponder@il.ibm.com.
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com
Ponder This Solution:
The answers are:
A sketch of the proofs follows.
If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com