Puzzle
5 minute read

Ponder This Challenge - February 2005 - Infinite right triangles

Ponder This Challenge:

Puzzle for February 2005

Here's a geometric puzzle. All three parts need to be solved.

Start with a right triangle T1 whose vertices are (0,0), (0,1), (1,1). The angle at (0,0) is /4. Use the hypotenuse of T1 as the leg of a new triangle T2, whose angle at (0,0) is /8, and which extends down towards the x-axis. Use the hypotenuse of T2 as the leg of a new triangle T3, whose angle at (0,0) is /16. Continue ad infinitum.

The angles at (0,0) form an infinite series which sums to /2, so the limit of the process is a line segment on the x-axis.

Part 1: How long is that segment?

Part 2: Find an equation in polar coordinates (r,) of a curve passing through all the vertices of the resulting triangles, except possibly (0,0).

Part 3: Find an equation for that curve in rectangular coordinates (x,y).


The first 100 people who answer correctly will be listed. The answer will be posted a week after the 100th is received, or at the end of the month.

We will post the names of those who submit a correct, original solution! If you don't want your name posted then please include such a statement in your submission!

We invite visitors to our website to submit an elegant solution. Send your submission to the ponder@il.ibm.com.

If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com

Solution

  • Answer:

    Let r[k] denote the length of the hypotenuse of triangle Tk, so that r[k-1] is the length of one leg of Tk, and r[0]=1 for starters. We have r[k-1]/r[k]=cos((/2)/2^k). This recurrence relation, along with initial condition r[0]=1, is solved by r[k]=(2^k)sin((/2)/2^k). (Apply the formula for sin(2b)=2sin(b)cos(b) to b=((/2)/2^k).) Restate this as r[k]=(/2)(sin(c[k])/c[k]) where c[k]=(/2)/2^k, notice that c[k] tends to 0 as k increases, and use limit(sin(z)/z)=1 as z tends to 0, to deduce that r[k] tends to the limit p/2, which answers Part 1.

    Notice that in the above expression, c[k] is also the angle between the x-axis and the hypotenuse of triangle Tk. So the point with polar coordinates (r,)=(r[k],c[k]) is one of the vertices of triangle Tk. A curve passing through all such vertices is given by r=(/2)(sin()/). This answers Part 2.

    Converting this to rectangular coordinates, we find y/x = tan [ y / 2(x^2+y^2) ] , to answer Part 3.


    If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com

Solvers

  • Tomas G. Rokicki (01.31.2005 @01:36:38 PM EDT)
  • Michael Nedzelsky (01.31.2005 @05:01:19 PM EDT)
  • Max Alekseyev (01.31.2005 @06:45:03 PM EDT)
  • Tamas (01.31.2005 @07:06:33 PM EDT)
  • Visegrady (01.31.2005 @07:06:33 PM EDT)
  • Eugene Vasilchenko (01.31.2005 @07:15:14 PM EDT)
  • Mayank Kabra (02.01.2005 @12:36:33 AM EDT)
  • Rustem Aidagulov (02.01.2005 @01:05:30 AM EDT)
  • IQSTAR (02.01.2005 @02:01:48 AM EDT)
  • Narendra Agrawal (02.01.2005 @04:40:40 AM EDT)
  • Dan Dima (02.01.2005 @07:14:10 AM EDT)
  • Raicho Tchalkov (02.01.2005 @07:16:09 AM EDT)
  • Kenneth Chan (02.01.2005 @07:16:10 AM EDT)
  • Jose H. Nieto (02.01.2005 @08:41:31 AM EDT)
  • Ivan Golovach (02.01.2005 @10:25:31 AM EDT)
  • Joe BGI SF (02.01.2005 @01:20:54 PM EDT)
  • Fendel (02.01.2005 @01:20:54 PM EDT)
  • Dinesh Layek (02.01.2005 @03:50:44 AM EDT)
  • Dion K Harmon (02.01.2005 @04:00:45 PM EDT)
  • Leonardo Liang (02.02.2005 @02:06:22 AM EDT)
  • Hao Wu (02.02.2005 @02:20:51 AM EDT)
  • Dharmadeep Muppalla (02.02.2005 @03:46:09 AM EDT)
  • Igor Malashkin (02.02.2005 @03:47:33 AM EDT)
  • Dr. Luke Pebody (02.02.2005 @05:19:51 AM EDT)
  • Guangzhong Sun (02.02.2005 @06:35:19 AM EDT)
  • Vineet Dwivedi (02.02.2005 @12:43:06 PM EDT)
  • Yunpeng Zhou (02.02.2005 @12:51:46 PM EDT)
  • Hagen von Eitzen (02.02.2005 @03:55:31 PM EDT)
  • Vineet Gupta (02.02.2005 @04:12:14 PM EDT)
  • Vincent Vermaut (02.02.2005 @04:29:12 PM EDT)
  • Ken Crounse (02.02.2005 @04:49:03 PM EDT)
  • Ashwin Lall (02.02.2005 @05:12:59 PM EDT)
  • Piros Lucian (02.02.2005 @07:29:47 PM EDT)
  • Kennedy (02.02.2005 @08:00:30 PM EDT)
  • Kalyana Chakravarthy (02.02.2005 @08:30:19 PM EDT)
  • Bart De Vylder (02.03.2005 @07:15:19 AM EDT)
  • David Friedman (02.03.2005 @11:53:43 AM EDT)
  • Christian Vanhulle (02.03.2005 @12:40:35 PM EDT)
  • Vinko Marinkovic (02.03.2005 @09:22:00 AM EDT)
  • Sachin Shukla (02.04.2005 @03:51:45 AM EDT)
  • Victor Chang (02.04.2005 @04:16:37 AM EDT)
  • Omer Faruk Alis (02.04.2005 @04:47:36 AM EDT)
  • Dipak K Jha (02.05.2005 @12:47:33 PM EDT)
  • Bhaskara Aditya (02.04.2005 @06:41:38 AM EDT)
  • Pascal Brisset (02.04.2005 @09:53:25 AM EDT)
  • Tameen Khan (02.04.2005 @11:03:22 AM EDT)
  • Amit Jain (02.04.2005 @02:13:00 PM EDT)
  • Emma Rebato (02.04.2005 @02:22:22 PM EDT)
  • Anand (02.04.2005 @03:18:57 PM EDT)
  • John Hart (02.04.2005 @04:31:50 PM EDT)
  • Daniel Bitin (02.04.2005 @04:43:48 PM EDT)
  • George Ciobanu (02.04.2005 @06:28:35 PM EDT)
  • Samir Kagadkar (02.04.2005 @06:39:36 PM EDT)
  • Coserea Gheorghe (02.04.2005 @07:38:29 PM EDT)
  • Alexey Vorobyov (02.04.2005 @08:33:04 PM EDT)
  • Kim Se Kwon (02.04.2005 @11:31:38 PM EDT)
  • Dave Dodson (02.04.2005 @11:54:30 PM EDT)
  • Rubén Hernández Aza (02.05.2005 @07:30:53 AM EDT)
  • Lizhao Zhang (02.05.2005 @06:19:48 PM EDT)
  • Pradheep Elango (02.06.2005 @01:40:55 AM EDT)
  • Oskar Sigvardsson (02.06.2005 @07:07:47 PM EDT)
  • Sunil Nandihalli (02.07.2005 @12:12:20 AM EDT)
  • Shubin Hu (02.07.2005 @01:17:16 AM EDT)
  • John G. Fletcher (02.07.2005 @01:22:58 AM EDT)
  • Arup Salui (02.07.2005 @02:08:26 AM EDT)
  • John Tromp (02.07.2005 @10:02:57 AM EDT)
  • Scott Hotes (02.07.2005 @03:45:58 PM EDT)
  • Dave Biggar (02.08.2005 @05:09:00 AM EDT)
  • Guler Amos (02.08.2005 @10:23:57 AM EDT)
  • Claudio Baiocchi (02.08.2005 @12:04:38 PM EDT)
  • Natalia Kolganova (02.08.2005 @02:44:00 PM EDT)
  • Raghav Bhaskar (02.09.2005 @10:02:22 AM EDT)
  • Caltech Math Students (02.09.2005 @04:40:56 PM EDT)
  • John Ritson (02.09.2005 @10:58:28 PM EDT)
  • Thiru Sampath (02.09.2005 @11:02:00 PM EDT)
  • Divyesh Dixit (02.10.2005 @05:35:53 AM EDT)
  • Steve Powell (02.10.2005 @08:15:45 AM EDT)
  • Maxim Zabara (02.11.2005 @02:32:23 AM EDT)
  • Emile Joubert (02.11.2005 @10:53:42 AM EDT)
  • Vince Lynch (02.11.2005 @01:14:18 PM EDT)
  • David McQuillan (02.11.2005 @05:28:42 PM EDT)
  • Florbela Isabel Carrasqueiras (02.12.2005 @01:10:21 PM EDT)
  • Bill Webb (02.12.2005 @02:55:24 PM EDT)
  • Boris Silantiev (02.12.2005 @04:33:29 PM EDT)
  • Daniel Chong Jyh Tar (02.12.2005 @11:18:18 PM EDT)
  • Herbert Groscot (02.13.2005 @08:05:32 AM EDT)
  • Lovro Puzar (02.13.2005 @01:15:37 PM EDT)
  • Karl D'Souza (02.13.2005 @05:33:51 PM EDT)
  • Franco Bassi (02.13.2005 @06:19:41 PM EDT)
  • Tim Lewis (02.16.2005 @04:57:36 PM EDT)
  • Nathaniel Litton (02.17.2005 @01:34:00 PM EDT)
  • Aditya Utturwar (02.18.2005 @10:02:43 AM EDT)
  • Narayanan Rajamanin (02.19.2005 @07:08:19 PM EDT)
  • Sergey Povetkin (02.20.2005 @01:40:21 PM EDT)
  • Jay Lewandowski (02.21.2005 @01:18:48 AM EDT)
  • Ajay Agrawal (02.24.2005 @05:16:08 AM EDT)
  • Richard A Bauer (02.24.2005 @09:28:58 PM EDT)
  • John Dalbec (02.26.2005 @12:06:55 AM EDT)
  • Yakov Sirotkin (02.26.2005 @03:26:05 AM EDT)
  • Sridevi Parise & Naval Verma (02.28.2005 @02:28:07 AM EDT)
  • Petru Budur (02.28.2005 @05:43:08 AM EDT)

Related posts