Puzzle
6 minute read

Ponder This Challenge - February 2013 - Concatenating squares

Ponder This Challenge:

James Tanton tweeted ( https://twitter.com/jamestanton/status/293127359291330561) that "16 and 9 are each square numbers, and putting them together, 169, gives another square" and he then asked for other examples.

Our challenge this month is to find integers x, y, and z such that concatenating x^2 and y^2 gives z^2, and that z has at least four consecutive nines.

Update 2/6: the challenge stating that x,y and z should be non-zero.


We will post the names of those who submit a correct, original solution! If you don't want your name posted then please include such a statement in your submission!

We invite visitors to our website to submit an elegant solution. Send your submission to the ponder@il.ibm.com.

If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com

Solution

  • When preparing the challenge this month, I made a small mistake that made the question much easier than intended.

    Here is the solution, as I derived it:

    Let y^2 be a k-digits-long number, giving us 10^k x^2 + y^2 = z^2.

    Write z=10^k a + b and we get

    10^k x^2 + y^2 = (10^k a + b)^2 = 10^k a(10^k a+ 2b) + b^2.

    So, b^2=y^2 (mod 10^k). Here I made the mistake of concluding that b=y.

    Those who want to try to solve a more difficult version of the question, can stop here and ponder a little on solving this version.

    My mistake was, of course, that b can be -y mod(10^k), which lends itself to several trivial solutions like

    x = 5 * 10^(k-1) - 1; y = 10^k -1; and z = 5 * 10^(2 * k-1) - 10^k + 1.

    If we continue with the assumption that b=y, we get

    x^2 = a^2 10^k + 2ya

    so y = (x^2-a^2 10^k) / 2a.

    For every k and a, we can compute x as ceil(a*sqrt(10^k)) and check whether the resulting y is divisible by 2a.

    The fact that sqrt(10^37) is surprisingly close to an integer (~3162277660168379331.99889) gives us, for k=37, many possible solutions. Choosing a=463 gives us the intended solution of

    x=1464134556657959630716

    y=1619999831463380856

    z=4630000000000000000001619999831463380856

    J�nos Kram�r and Andreas Stiller sent us a solution with y=1, where one can solve Pell's equation: 10*x^2 + 1 = z^2 and get:

    x=44101535838578367767701517414261786147419230399948898912033566977281348406767427039616458154500555609301871792239537197062035119616191426015391050131988492071587920645046734772112341070906349353550324660996677696009221202338336

    y=1

    z=139461301561451525695691667071742666259644328693387043194785898131383963733064589327602699959968509145992213260946921467365082720725567556648743873803852310099994956836260701173999664267548159260952703090632330767251579838305281

    Jan Fricke also used Pell's equation to get to a solution with 60,503 digits.

Solvers

  • Joseph DeVincentis (02/01/2013 01:44 PM EDT)
  • Adel El-Atawy (02/01/2013 02:04 PM EDT)
  • Dennis Langdeau (02/01/2013 03:17 PM EDT)
  • Kevin Bauer (02/01/2013 03:33 PM EDT)
  • Donald Dodson (02/01/2013 03:35 PM EDT)
  • Martin Husar (02/01/2013 03:36 PM EDT)
  • Sergey Grishaev (02/01/2013 03:59 PM EDT)
  • Peter Gerritson (02/01/2013 04:07 PM EDT)
  • Markus von Rimscha (02/01/2013 04:07 PM EDT)
  • Vladimir Sedach (02/01/2013 04:27 PM EDT)
  • Stéphane Higueret (02/01/2013 05:20 PM EDT)
  • Todd Will (02/01/2013 05:33 PM EDT)
  • Bartosz Budzanowski (02/01/2013 05:51 PM EDT)
  • Rudy Cortembert (02/01/2013 05:54 PM EDT)
  • Deane Stewart (02/01/2013 05:59 PM EDT)
  • Anders Kaseorg (02/01/2013 06:36 PM EDT)
  • Sunil Srivastava (02/01/2013 07:21 PM EDT)
  • Deron Stewart (02/01/2013 11:32 PM EDT)
  • Radu-Alexandru Todor (02/01/2013 10:51 PM EDT)
  • Andrey Stepin (02/02/2013 12:47 AM EDT)
  • Alex Wagner (02/02/2013 02:43 AM EDT)
  • Oleg Zlydenko (02/02/2013 04:35 AM EDT)
  • Leandro Araújo (02/02/2013 07:15 AM EDT)
  • Tony Harrison (02/02/2013 09:07 AM EDT)
  • Mark Stuckel (02/02/2013 10:35 AM EDT)
  • Hakan Summakoglu (02/02/2013 11:30 AM EDT)
  • Jesus Sanz (02/02/2013 12:48 PM EDT)
  • Klaus Müller (02/02/2013 12:57 PM EDT)
  • Øyvind Grotmol (02/02/2013 02:21 PM EDT)
  • Andreas Stiller (02/02/2013 06:13 PM EDT)
  • Florian Fischer (02/02/2013 06:21 PM EDT)
  • Tao Cheng (02/02/2013 06:29 PM EDT)
  • Dan Dima (02/03/2013 02:56 AM EDT)
  • Roberto Tauraso (02/03/2013 03:36 AM EDT)
  • Philippe Fondanaiche (02/03/2013 08:32 AM EDT)
  • Harald Bögeholz (02/03/2013 10:51 AM EDT)
  • Deepak Bal (02/03/2013 11:16 AM EDT)
  • Paul McKenney (02/03/2013 02:29 PM EDT)
  • Daniel Bitin (02/03/2013 02:33 PM EDT)
  • Antoine Comeau (02/03/2013 04:32 PM EDT)
  • Dan Ignatoff (02/03/2013 06:51 PM EDT)
  • Michael Liepelt (02/04/2013 03:23 AM EDT)
  • Peter Holdsworth (02/04/2013 04:40 AM EDT)
  • Luke Pebody (02/04/2013 05:36 AM EDT)
  • Chuck Carroll (02/04/2013 10:24 AM EDT)
  • Arun C Ramachandran (02/04/2013 11:58 AM EDT)
  • Frederik Kaster (02/04/2013 12:15 PM EDT)
  • William Gunther (02/04/2013 12:27 PM EDT)
  • Puvichakravarthy Ramachandran (02/04/2013 01:31 PM EDT)
  • Seth Troisi (02/04/2013 02:21 PM EDT)
  • Hugo Pfoertner (02/04/2013 05:24 PM EDT)
  • Christian Pape (02/04/2013 07:22 PM EDT)
  • José Eduardo Gaboardi de Carvalho (02/04/2013 08:28 PM EDT)
  • Kurt Hectic (02/05/2013 09:35 AM EDT)
  • Armin Krauss (02/05/2013 09:50 AM EDT)
  • David Greer (02/05/2013 10:21 AM EDT)
  • Duane Bailey (02/05/2013 12:38 PM EDT)
  • Duane Ryan (02/05/2013 12:43 PM EDT)
  • Duane R. Bailey (02/05/2013 12:02 PM EDT)
  • Shirish Chinchalkar (02/05/2013 06:56 PM EDT)
  • Ignat Soroko (02/05/2013 09:37 PM EDT)
  • Liubing Yu (02/05/2013 10:11 PM EDT)
  • Javier Rodriguez (02/06/2013 03:16 AM EDT)
  • Ranjit Eswaran (02/06/2013 05:52 AM EDT)
  • Luis Mendes (02/06/2013 07:02 AM EDT)
  • Arthur Vause (02/06/2013 08:39 AM EDT)
  • Dave English (02/06/2013 10:30 AM EDT)
  • Karan P Dhadge (02/06/2013 11:30 AM EDT)
  • Jason Crease (02/06/2013 01:16 PM EDT)
  • Richard Gosiorovsky (02/06/2013 02:59 PM EDT)
  • Jeff Irwin (02/06/2013 04:07 PM EDT)
  • Joe Clark (02/07/2013 01:57 AM EDT)
  • Philippe Laborie (02/07/2013 01:57 AM EDT)
  • Kapil Agrawal (02/07/2013 03:32 AM EDT)
  • Vivek Ranjan Nema (02/07/2013 03:37 AM EDT)
  • Mahendra Kariya (02/07/2013 06:36 AM EDT)
  • Thomas Egense (02/07/2013 06:38 AM EDT)
  • János Kramár (02/07/2013 06:42 AM EDT)
  • Sandeep Navada (02/07/2013 08:38 AM EDT)
  • Greg Janée (02/07/2013 09:51 AM EDT)
  • Luis Ramada Pereira (02/07/2013 11:05 AM EDT)
  • J. Eric Ivancich (02/07/2013 02:10 PM EDT)
  • Gregory Fritz (02/07/2013 02:18 PM EDT)
  • Michael Slifker (02/07/2013 02:33 PM EDT)
  • Jerry Kearns (02/07/2013 02:35 PM EDT)
  • Tilmann Steinberg (02/07/2013 03:18 PM EDT)
  • Peter gabrovsek (02/07/2013 03:49 PM EDT)
  • Mathias Schenker (02/07/2013 04:21 PM EDT)
  • Stephan Weber (02/07/2013 04:57 PM EDT)
  • Jianhua Cheng (02/07/2013 07:39 PM EDT)
  • Joaquim Neves Carrapa (02/07/2013 07:52 PM EDT)
  • Matej Kollar (02/08/2013 08:00 AM EDT)
  • Sevag Papazian (02/08/2013 09:38 AM EDT)
  • Fabien Petronelli (02/08/2013 09:53 AM EDT)
  • Chris Shannon (02/08/2013 07:18 PM EDT)
  • Mark Pervovskiy (02/09/2013 11:31 AM EDT)
  • Andrei Zaharescu (02/10/2013 08:21 AM EDT)
  • Luis Manuel Frutos (02/10/2013 03:40 PM EDT)
  • Priyanka Gagneja Dhingra (02/10/2013 11:02 PM EDT)
  • Olivier Mercier (02/11/2013 02:24 PM EDT)
  • David Vainapel (02/11/2013 07:13 AM EDT)
  • Siva Dirisala (02/12/2013 02:13 PM EDT)
  • Rob McColl (02/12/2013 05:32 PM EDT)
  • David Dodson (02/12/2013 05:55 PM EDT)
  • Victor Chang (02/12/2013 10:41 PM EDT)
  • Thomas Rohr (02/13/2013 05:11 AM EDT)
  • Paul Mandell (02/14/2013 07:28 AM EDT)
  • Vincent Lejeune (02/14/2013 10:29 AM EDT)
  • Ante Kovacic (02/14/2013 06:57 PM EDT)
  • Ryan Rechkemmer (02/14/2013 07:08 PM EDT)
  • Ian Barnard (02/15/2013 04:08 AM EDT)
  • Jan Fricke (02/15/2013 05:28 AM EDT)
  • Peter Park (02/15/2013 06:03 AM EDT)
  • Kipp Johnson (02/15/2013 09:29 AM EDT)
  • Adir HaCohen (02/15/2013 10:24 AM EDT)
  • Lewei Weng (02/16/2013 12:06 AM EDT)
  • Dylan Rose (02/16/2013 01:27 AM EDT)
  • Jose Nazario (02/16/2013 01:53 PM EDT)
  • Adrian Orzepowski (02/17/2013 07:57 AM EDT)
  • Jochen Klein (02/17/2013 03:32 PM EDT)
  • Don Ryan (02/17/2013 11:26 PM EDT)
  • Shouky Dan & Tamir Ganor (02/17/2013 11:47 PM EDT)
  • Sami Casanova (02/18/2013 08:57 AM EDT)
  • Rodrigo Viana Rocha (02/18/2013 08:42 PM EDT)
  • Kerry M. Soileau (02/19/2013 08:07 PM EDT)
  • Shmuel Menachem Spiegel (02/19/2013 11:38 PM EDT)
  • Minghao (Tommy) Liang (02/20/2013 01:42 PM EDT)
  • Philip Ward (02/20/2013 02:51 PM EDT)
  • Raphael Deem (02/20/2013 04:54 PM EDT)
  • Edgardo Deza (02/20/2013 08:47 PM EDT)
  • Nyles Heise (02/20/2013 10:35 PM EDT)
  • Michael Holschbach (02/21/2013 01:13 PM EDT)
  • Mark Kattenbelt (02/21/2013 03:00 PM EDT)
  • Max & Nick Nepokroeff (02/22/2013 12:22 AM EDT)
  • Abhiram R Devesh (02/22/2013 09:47 AM EDT)
  • Anoop Ghanwani (02/24/2013 04:06 AM EDT)
  • (02/24/2013 04:06 AM EDT)
  • Albert Stadle (02/24/2013 06:19 AM EDT)
  • r (02/24/2013 06:19 AM EDT)
  • Moritz Pflanze (02/24/2013 08:21 AM EDT)
  • r (02/24/2013 08:21 AM EDT)
  • Jorge Soares (02/25/2013 05:58 AM EDT)
  • Aditya Vohra (02/25/2013 03:07 AM EDT)
  • Jamie Jorgensen & Jason Lee (02/25/2013 08:16 PM EDT)
  • Tomek Czajka (02/27/2013 05:26 PM EDT)
  • Benjamin Bachmann (02/27/2013 06:33 PM EDT)
  • Simon Xu (02/27/2013 07:57 PM EDT)
  • Nadav Ben-Nun (02/27/2013 08:10 PM EDT)
  • Dugan Schmid (02/27/2013 10:06 PM EDT)
  • John Flavin (02/28/2013 01:42 PM EDT)
  • Dugan Schmid & Craig Oppenheim (02/28/2013 02:19 PM EDT)
  • Benjamin Burch (02/28/2013 05:46 PM EDT)

Related posts