Puzzle
3 minute read

Ponder This Challenge - November 2022 - The sock drawer

A sock drawer has bb socks of exactly two types: aa comfortable socks, and bab-a non-comfortable socks. When choosing socks, one picks two socks at random (uniformly) from the drawer.

If a=15a=15 and b=21b=21, the probability of choosing two comfortable socks is exactly 12\frac{1}{2}. Assuming the sock drawer is magical and can contain a=568345a=568345 and b=803761b=803761, we also get the probability of 12\frac{1}{2}.

Your goal: find a,ba,b such that the probability for two comfortable socks is exactly 1974170\frac{1}{974170}, and such that this is the minimal solution with bb having at least 100 digits (minimal with respect to the size of bb).

A bonus "*" will be given for finding the minimal D such that there are exactly 16 pairs a,ba,b giving the probability 1D\frac{1}{D} with bb having less than 100 digits.

Solution

  • November 2022 Solution:

    One possible solution is

    a =
    578531456294544759193960639508933458692135986207286734779245556353330267012496957470063389129282
    41502
    b =
    532012360194801766547790141073187864842946628525748481714720078933587785103495458094301593151732
    52600116
    

    For the bonus question we have D = 614. One possible method of obtaining this solutions is by converting the equation a(a1)b(b1)=1N\frac{a(a-1)}{b(b-1)}=\frac{1}{N} to an equation of the form x2dy2=1x^2-dy^2=1.
    Such an equation is called **Pell's equation** and there are standard method for solving it and generating all the solutions.

Solvers

  • Paul Revenant (30/10/2022 2:40 PM IDT)
  • Lazar Ilic (30/10/2022 3:24 PM IDT)
  • Gary M. Gerken (30/10/2022 5:16 PM IDT)
  • *Alper Halbutogullari (31/10/2022 8:47 AM IDT)
  • *Giorgos Kalogeropoulos (31/10/2022 12:41 PM IDT)
  • Christoph Baumgarten (31/10/2022 6:52 PM IDT)
  • *Bertram Felgenhauer (31/10/2022 11:12 PM IDT)
  • Bert Dobbelaere (1/11/2022 12:29 AM IDT)
  • *Victor Chang (1/11/2022 6:38 AM IDT)
  • Richard Gosiorovsky (1/11/2022 12:22 PM IDT)
  • Harald Bögeholz (1/11/2022 3:49 PM IDT)
  • Lorenzo Gianferrari Pini (1/11/2022 6:35 PM IDT)
  • *Kurt Foster (2/11/2022 4:38 PM IDT)
  • *Stéphane Higueret (2/11/2022 4:39 PM IDT)
  • Josh Marza (2/11/2022 5:29 PM IDT)
  • *Dan Dima (2/11/2022 7:10 PM IDT)
  • Davide Colì (2/11/2022 11:20 PM IDT)
  • *Prashant Wankhede (3/11/2022 5:31 AM IDT)
  • Michael Liepelt (3/11/2022 9:21 AM IDT)
  • Quentin Higueret (3/11/2022 2:25 PM IDT)
  • Lala Surya (4/11/2022 4:24 PM IDT)
  • Kang Jin Cho (4/11/2022 7:55 PM IDT)
  • *Franciraldo Cavalcante (4/11/2022 8:02 PM IDT)
  • *Sanandan Swaminathan (4/11/2022 10:16 PM IDT)
  • Aaron Kim (5/11/2022 4:14 PM IDT)
  • *Tim Walters (7/11/2022 1:12 AM IDT)
  • A. Ramanujan (7/11/2022 7:57 AM IDT)
  • Wilder Boyden (7/11/2022 5:55 PM IDT)
  • *David Greer (7/11/2022 6:05 PM IDT)
  • Mark Beyleveld (8/11/2022 4:17 PM IDT)
  • Laurence Warne (8/11/2022 6:33 PM IDT)
  • *Latchezar Christov (8/11/2022 6:41 PM IDT)
  • Keun Hyong Kwak (9/11/2022 3:03 AM IDT)
  • Dieter Beckerle (10/11/2022 12:08 PM IDT)
  • Daniel Bitin (10/11/2022 11:06 PM IDT)
  • Ian Lee (11/11/2022 2:28 AM IDT)
  • Lorenz Reichel (11/11/2022 10:08 AM IDT)
  • Teawoo Kim kim (12/11/2022 1:59 AM IDT)
  • Austin Lee (12/11/2022 6:20 PM IDT)
  • *Marco Bellocchi (13/11/2022 2:05 AM IDT)
  • Shouky Dan & Tamir Ganor (14/11/2022 3:04 PM IDT)
  • Karl Mahlburg (15/11/2022 4:52 AM IDT)
  • *Vladimir Volevich (15/11/2022 6:37 AM IDT)
  • Jesús Vergara Temprado (16/11/2022 3:39 PM IDT)
  • Daniel Chong Jyh Tar (17/11/2022 7:58 AM IDT)
  • Arthur Vause (17/11/2022 3:58 PM IDT)
  • *Richard T Liu (19/11/2022 11:03 PM IDT)
  • Kipp Johnson (20/11/2022 6:56 PM IDT)
  • Diana Gornea (22/11/2022 5:43 PM IDT)
  • Sachal Mahajan (23/11/2022 12:04 AM IDT)
  • Albert Stadler (24/11/2022 9:24 AM IDT)
  • *Nyles Heise (26/11/2022 8:16 AM IDT)
  • *Chris Shannon (27/11/2022 1:40 AM IDT)
  • *Alexander Gramolin (28/11/2022 6:11 AM IDT)
  • *Li Li (28/11/2022 7:54 AM IDT)
  • Carl Löndahl (28/11/2022 8:57 PM IDT)
  • Aaditya Raghavan (29/11/2022 1:56 AM IDT)
  • Ali Gurel (29/11/2022 8:52 AM IDT)
  • *Andreas Puccio (29/11/2022 9:25 PM IDT)
  • Radu-Alexandru Todor (30/11/2022 12:45 AM IDT)
  • David F.H. Dunkley (30/11/2022 1:28 AM IDT)
  • Reiner Martin (30/11/2022 6:04 PM IDT)
  • Oscar Volpatti (1/12/2022 3:00 AM IDT)
  • Motty Porat (2/12/2022 4:51 PM IDT)
  • Martin Bisson (4/12/2022 9:11 AM IDT)

Related posts