Attribute-based people search in surveillance environments
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
MIRA based tuning methods have been widely used in statistical machine translation (SMT) system with a large number of features. Since the corpus-level BLEU is not decomposable, these MIRA approaches usually define a variety of heuristic-driven sentence-level BLEUs in their model losses. Instead, we present a new MIRA method, which employs an exact corpus-level BLEU to compute the model loss. Our method is simpler in implementation. Experiments on Chinese-to-English translation show its effectiveness over two state-of-the-art MIRA implementations.
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Pavel Kisilev, Daniel Freedman, et al.
ICPR 2012
Sudeep Sarkar, Kim L. Boyer
Computer Vision and Image Understanding