Stephanie Houde, Krissy Brimijoin, et al.
IUI 2025
Radio astronomy is a vital tool for astronomers to study the Universe and has seen a wave of renewed interest and advancement over recent years. Next-generation radio telescope arrays like the SKA, ALMA and VLA are developed to be significantly more sensitive compared to older telescopes, which as a result also make them more susceptible to radio frequency interference (RFI). This highlights the need for effective RFI mitigation techniques in radio astronomy. We present a machine learning-based RFI mitigation approach that aims to separate RFI-corrupted spectrogram observations into signal of interest and RFI components in an unsupervised manner using a modified generative adversarial network (GAN) framework. We show that this unsupervised source separation approach is able to achieve performance comparable to a fully supervised approach.
Stephanie Houde, Krissy Brimijoin, et al.
IUI 2025
Byungchul Tak, Shu Tao, et al.
IC2E 2016
Kevin Gu, Eva Tuecke, et al.
ICML 2024
Zongyuan Ge, Sergey Demyanov, et al.
BMVC 2017