Ronen Feldman, Martin Charles Golumbic
Ann. Math. Artif. Intell.
We consider the global and local convergence properties of a class of Lagrangian barrier methods for solving nonlinear programming problems. In such methods, simple bound constraints may be treated separately from more general constraints. The objective and general constraint functions are combined in a Lagrangian barrier function. A sequence of such functions are approximately minimized within the domain defined by the simple bounds. Global convergence of the sequence of generated iterates to a first-order stationary point for the original problem is established. Furthermore, possible numerical difficulties associated with barrier function methods are avoided as it is shown that a potentially troublesome penalty parameter is bounded away from zero. This paper is a companion to previous work of ours on augmented Lagrangian methods.
Ronen Feldman, Martin Charles Golumbic
Ann. Math. Artif. Intell.
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
Michael E. Henderson
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Fausto Bernardini, Holly Rushmeier
Proceedings of SPIE - The International Society for Optical Engineering