ClusterLink: A Multi-Cluster Application Interconnect
Kfir Toledo, Pravein Govindan Kannan, et al.
SYSTOR 2023
Multithreaded applications with multigigabyte heaps running on modern servers provide new challenges for garbage collection (GC). The challenges for "server-oriented" GC include: ensuring short pause times on a multigigabyte heap while minimizing throughput penalty, good scaling on multiprocessor hardware, and keeping the number of expensive multicycle fence instructions required by weak ordering to a minimum. We designed and implemented a collector facing these demands building on the mostly concurrent garbage collector proposed by Boehm et al. [1991]. Our collector incorporates new ideas into the original collector. We make it parallel and incremental; we employ concurrent low-priority background GC threads to take advantage of processor idle time; we propose novel algorithmic improvements to the basic mostly concurrent algorithm improving its efficiency and shortening its pause times; and finally, we use advanced techniques, such as a low-overhead work packet mechanism to enable full parallelism among the incremental and concurrent collecting threads and ensure load balancing. We compared the new collector to the mature, well-optimized, parallel, stop-the-world mark-sweep collector already in the IBM JVM. When allowed to run aggressively, using 72% of the CPU utilization during a short concurrent phase, our collector prototype reduces the maximum pause time from 161 ms to 46 ms while only losing 11.5% throughput when running the SPECjbb2000 benchmark on a 600-MB heap on an 8-way PowerPC 1.1-GHz processors. When the collector is limited to a nonintrusive operation using only 29% of the CPU utilization, the maximum pause time obtained is 79 ms and the loss in throughput is 15.4%. © 2005 ACM.
Kfir Toledo, Pravein Govindan Kannan, et al.
SYSTOR 2023
Robert Birke, Daniel Crisan, et al.
HPSR 2012
Ori Ben-Yitzhak, Irit Goft, et al.
ACM SIGPLAN Notices
Daniel Crisan, Robert Birke, et al.
IEEE J-SAC