Association control in mobile wireless networks
Minkyong Kim, Zhen Liu, et al.
INFOCOM 2008
Modern large language model (LLM) alignment techniques rely on human feedback, but it is unclear whether these techniques fundamentally limit the capabilities of aligned LLMs. In particular, it is unknown if it is possible to align (stronger) LLMs with superhuman capabilities with (weaker) human feedback without degrading their capabilities. This is an instance of the weak-to-strong generalization problem: using feedback from a weaker (less capable) model to train a stronger (more capable) model. We prove that weak-to-strong generalization is possible by eliciting latent knowledge from pre-trained LLMs. In particular, we cast the weak-to-strong generalization problem as a transfer learning problem in which we wish to transfer a latent concept prior from a weak model to a strong pre-trained model. We prove that a naive fine-tuning approach suffers from fundamental limitations, but an alternative refinement-based approach suggested by the problem structure provably overcomes the limitations of fine-tuning. Finally, we demonstrate the practical applicability of the refinement approach in multiple LLM alignment tasks.
Minkyong Kim, Zhen Liu, et al.
INFOCOM 2008
Daniel M. Bikel, Vittorio Castelli
ACL 2008
Nanda Kambhatla
ACL 2004
Gabriele Dominici, Pietro Barbiero, et al.
ICLR 2025