Ira Pohl
Artificial Intelligence
We study functions with multiple output values, and use active sampling to identify an example for each of the possible output values. Our results for this setting include: (1) Efficient active sampling algorithms for simple geometric concepts, such as intervals on a line and axis parallel boxes. (2) A characterization for the case of binary output value in a transductive setting. (3) An analysis of active sampling with uniform distribution in the plane. (4) An efficient algorithm for the Boolean hypercube when each output value is a monomial. © 2007 Springer Science+Business Media, LLC.
Ira Pohl
Artificial Intelligence
Bemali Wickramanayake, Zhipeng He, et al.
Knowledge-Based Systems
Rangachari Anand, Kishan Mehrotra, et al.
IEEE Transactions on Neural Networks
Daniel Karl I. Weidele, Priyanshu Rai, et al.
AAAI 2026