Attribute-based people search in surveillance environments
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
In this paper we investigate a novel method for adoptively improving the machine recognition of handwritten words by applying a k-Nearest Neighbor (k-NN) classifier to the N-best word-hypothesis lists generated by a writer-independent Hidden Markov Model (HMM). Each new N-best list from the HMM is compared to the N-best lists in the k-NN classifier. A decision module is used to select between the output of the HMM and the matches found by the k-NN classifier. The N-best list chosen by the decision module can be automatically added to the k-NN classifier if it is not already in the k-NN classifier. This dynamic update of the k-NN classifier enables the system to adapt to new data without retraining. On a writer-independent set of 1158 handwritten words, this method reduces the error rate by approximately 30%. This method is fast and memory-efficient, and lends itself to many interesting generalizations.
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Pavel Kisilev, Daniel Freedman, et al.
ICPR 2012
Michelle X. Zhou, Fei Wang, et al.
ICMEW 2013