Kasra Sardashti, Dennis Paul, et al.
Journal of Materials Research
The growth in efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has slowed, due in part to the intrinsic limitations imposed by the band tailing attributed primarily to I-II antisite exchange. In this study, density functional theory simulations show that when Ag is substituted for Cu to form kesterite Ag2ZnSnSe4 (AZTSe), the I-II isolated antisite formation energy becomes 3.7 times greater than in CZTSSe, resulting in at least an order of magnitude reduction in I-II antisite density. Experimental evidence of an optoelectronically improved material is also provided. Comparison of the low-temperature photoluminescence (PL) structure of Cu(In,Ga)Se2 (CIGSe), CZTSSe, and AZTSe shows that AZTSe has a shallow defect structure with emission significantly closer to the band edge than CZTSe. Existence of suppressed band tailing is found in the proximity of the room-temperature PL peak of AZTSe to its measured band gap. The results are consistent with AZTSe being a promising alternative to CZTSSe and CIGSe for thin film photovoltaics.
Kasra Sardashti, Dennis Paul, et al.
Journal of Materials Research
Kasra Sardashti, Richard Haight, et al.
ACS AMI
Talia S. Gershon, Kasra Sardashti, et al.
Advanced Energy Materials
Kasra Sardashti, Richard Haight, et al.
Advanced Energy Materials