Learning Reduced Order Dynamics via Geometric Representations
Imran Nasim, Melanie Weber
SCML 2024
The scaling-limit symmetry of Zq-invariant spin systems is studied by renormalization-group methods based on qualitative bifurcation theory rather than a series expansion in. Under the plausible assumption of the absence of secondary bifurcations, it is shown that an ordinary critical phase with q 2 or 4 must have full SO2 invariance in the scaling limit; moreover, any such asymptotically isotropic critical phase is stable under Zq-invariant perturbations for q>4. Previously obtained results about two-dimensional Kosterlitz-Thouless phases for clock models have a natural interpretation within this group-theoretic bifurcation analysis. © 1982 The American Physical Society.
Imran Nasim, Melanie Weber
SCML 2024
Thomas H. Baum, Carl E. Larson, et al.
Journal of Organometallic Chemistry
A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990
J.C. Marinace
JES