A.B. McLean, R.H. Williams
Journal of Physics C: Solid State Physics
A low-energy electron-diffraction intensity analysis of a Tb(112̄0) surface finds that the atomic structure of this surface is different from bulk structure in two ways: The spacing between the first and the second layer, which have two inequivalent atoms in the unit mesh, is contracted by 3.3% (0.06), and the two inequivalent atoms in the first layer translate parallel to the surface by equal and opposite amounts of 0.21. Thus the change in registration of the composite surface layer preserves both the size and the symmetry of the unit mesh of parallel bulk layers. This kind of surface rearrangement is different from that reported by others for the (112̄0) surfaces of other rare-earth metals, such as Y, Gd, and Ho. © 1992 The American Physical Society.
A.B. McLean, R.H. Williams
Journal of Physics C: Solid State Physics
A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990
Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
Thomas H. Baum, Carl E. Larson, et al.
Journal of Organometallic Chemistry