Attribute-based people search in surveillance environments
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
Automatic multimodal recognition of spontaneous affective expressions is a largely unexplored and challenging problem. In this paper, we explore audio-visual emotion recognition in a realistic human conversation setting - Adult Attachment Interview (AAI). Based on the assumption that facial expression and vocal expression be at the same coarse affective states, positive and negative emotion sequences are labeled according to Facial Action Coding System Emotion Codes. Facial texture in visual channel and prosody in audio channel are integrated in the framework of Adaboost multi-stream hidden Markov model (AMHMM) in which Adaboost learning scheme is used to build component HMM fusion. Our approach is evaluated in the preliminary AAI spontaneous emotion recognition experiments. Copyright 2006 ACM.
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Pavel Kisilev, Daniel Freedman, et al.
ICPR 2012
Michelle X. Zhou, Fei Wang, et al.
ICMEW 2013