Saurabh Paul, Christos Boutsidis, et al.
JMLR
Monte-Carlo Tree Search (MCTS) methods are drawing great interest after yielding breakthrough results in computer Go. This paper proposes a Bayesian approach to MCTS that is inspired by distributionfree approaches such as UCT [13], yet significantly differs in important respects. The Bayesian framework allows potentially much more accurate (Bayes-optimal) estimation of node values and node uncertainties from a limited number of simulation trials. We further propose propagating inference in the tree via fast analytic Gaussian approximation methods: this can make the overhead of Bayesian inference manageable in domains such as Go, while preserving high accuracy of expected-value estimates. We find substantial empirical outperformance of UCT in an idealized bandit-tree test environment, where we can obtain valuable insights by comparing with known ground truth. Additionally we rigorously prove on-policy and off-policy convergence of the proposed methods.
Saurabh Paul, Christos Boutsidis, et al.
JMLR
C.A. Micchelli, W.L. Miranker
Journal of the ACM
Joxan Jaffar
Journal of the ACM
Cristina Cornelio, Judy Goldsmith, et al.
JAIR