Graph Adversarial Attack via Rewiring
Yao Ma, Suhang Wang, et al.
KDD 2021
Motivated by the recent discovery that the interpretation maps of CNNs could easily be manipulated by adversarial attacks against network interpretability, we study the problem of interpretation robustness from a new perspective of Rényi differential privacy (RDP). The advantages of our Rényi-Robust-Smooth (RDP-based interpretation method) are three-folds. First, it can offer provable and certifiable top-k robustness. That is, the top-k important attributions of the interpretation map are provably robust under any input perturbation with bounded ℓd-norm (for any d≥1, including d=∞). Second, our proposed method offers ∼12% better experimental robustness than existing approaches in terms of the top-k attributions. Remarkably, the accuracy of Rényi-Robust-Smooth also outperforms existing approaches. Third, our method can provide a smooth tradeoff between robustness and computational efficiency. Experimentally, its top-k attributions are twice more robust than existing approaches when the computational resources are highly constrained.
Yao Ma, Suhang Wang, et al.
KDD 2021
Binchi Zhang, Yushun Dong, et al.
ICLR 2024
Pin-Yu Chen
ICML 2025
Chia-yi Hsu, Jia You Chen, et al.
ICASSP 2025