Publication
ICML 2019
Conference paper
Characterization of convex objective functions and optimal expected convergence rates for SGD
Abstract
We study Stochastic Gradient Descent (SGD) with diminishing step sizes for convex objective functions. We introduce a definitional framework and theory that defines and characterizes a core property, called curvature, of convex objective functions. In terms of curvature we can derive a new inequality that can be used to compute an optimal sequence of diminishing step sizes by solving a differential equation. Our exact solutions confirm known results in literature and allows us to fully characterize a new regularizer with its corresponding expected convergence rates.