Michael E. Henderson
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
When a map has one positive Lyapunov exponent, its attractors often look like multidimensional, Cantorial plates of spaghetti. What saves the situation is that there is a deterministic jumping from strand to strand. We propose to approximate such attractors as finite sets of K suitably prescribed curves, each parametrized by an interval. The action of the map on each attractor is then approximated by a map that takes a set of curves into itself, and we graph it on a KxK checkerboard as a discontinuous one-dimensional map that captures the quantitative dynamics of the original system when K is sufficiently large. © 1995 American Institute of Physics.
Michael E. Henderson
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
R.B. Morris, Y. Tsuji, et al.
International Journal for Numerical Methods in Engineering
Arnon Amir, Michael Lindenbaum
IEEE Transactions on Pattern Analysis and Machine Intelligence
Imran Nasim, Melanie Weber
SCML 2024