Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
Thermal decomposition of triphenyl boron vapor at 800°C produced boron-carbon thin films of composition C16-18B. The room-temperature resistivity of this material was 1.8 × 10-4 Ω· cm, considerably lower than pyrolytic carbons produced at similar temperatures. This resistivity remained unchanged as the temperature was lowered to 5 K, indicating fine-grain, metallic-like conductivity. Material composition was determined using Auger electron spectroscopy. X-ray and electron diffraction studies show that the films had a layered structure similar to turbostatic graphite and ESCA experiments indicate that the boron is bonded to carbon and is not present as a second phase. © 1994.
Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
Thomas H. Baum, Carl E. Larson, et al.
Journal of Organometallic Chemistry
I. Morgenstern, K.A. Müller, et al.
Physica B: Physics of Condensed Matter
R.J. Gambino, N.R. Stemple, et al.
Journal of Physics and Chemistry of Solids