Co-Clustering Structural Temporal Data with Applications to Semiconductor Manufacturing
Abstract
Recent years have witnessed data explosion in semiconductor manufacturing due to advances in instrumentation and storage techniques. In particular, following the same recipe for a certain IC device, multiple tools and chambers can be deployed for the production of this device, during which multiple time series can be collected, such as temperature, impedance, gas flow, electric bias, etc. These time series naturally fit into a two-dimensional array (matrix), i.e., Each element in this array corresponds to a time series for one process variable from one chamber. To leverage the rich structural information in such temporal data, in this paper, we propose a novel framework named C-Struts to simultaneously cluster on the two dimensions of this array. In this framework, we interpret the structural information as a set of constraints on the cluster membership, introduce an auxiliary probability distribution accordingly, and design an iterative algorithm to assign each time series to a certain cluster on each dimension. To the best of our knowledge, we are the first to address this problem. Extensive experiments on benchmark and manufacturing data sets demonstrate the effectiveness of the proposed method.