Combining cross-stream and time dimensions in phonetic speaker recognition
Abstract
Recent studies show that phonetic sequences from multiple languages can provide effective features for speaker recognition. So far, only pronunciation dynamics in the time dimension, i.e., n-gram modeling on each of the phone sequences, have been examined. In the JHU 2002 Summer Workshop, we explored modeling the statistical pronunciation dynamics across streams in multiple languages (cross-stream dimension) as an additional component to the time dimension. We found that bigram modeling in the cross-stream dimension achieves improved performance over that in the time dimension on the NIST 2001 Speaker Recognition Evaluation Extended Data Task. Moreover, a linear combination of information from both dimensions at the score level further improves the performance, showing that the two dimensions contain complementary information.