A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990
The conductivity and the thermoelectric power S have been studied experimentally on the organic conductors bis-tetramethyltetraselenafulvalenium hexafluorophosphide [(TMTSF)2PF6] and bis-tetramethyltetrathiafulvalenium hexafluorophosphide [(TMTTF)2PF6] and their solid solutions: (TMTSF1-xTMTTFx)2PF6. Dramatic effects are seen in already when dilute concentrations of TMTTF molecules are introduced in the TMTSF chains, and for x=0.1, shows generally activated behavior. The thermopower, on the contrary, remains basically unaffected for x at least as large as 0.25. These unusual findings are attributed to the small transverse transfer integral tb associated with the TMTTF molecule, which leads to large on-site Coulomb repulsion. The parallel transfer integrals ta appear to be very similar for the two constituent molecules. A slight x dependence of S, appearing below approximately 100 K, is attributed to enhanced one-dimensionality when the amount of TMTTF is increased. Close to and below the spin-density-wave ordering temperature, more marked x dependences appear, indicative of impurities. The x=0.85 salt behaves generally similar to the pristine TMTTF material, though dominated by additional impurity levels. © 1984 The American Physical Society.
A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990
E. Burstein
Ferroelectrics
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
Q.R. Huang, Ho-Cheol Kim, et al.
Macromolecules