Frank R. Libsch, S.C. Lien
IBM J. Res. Dev
If (,) is an inner product on [a, b], and if [,]N is a discrete inner product analogous to (,), and such that [1, 1]N=(1, 1), then, a sufficient condition that the discrete orthogonal polynomials converge to the corresponding continuous orthogonal polynomials like N-p, is that [1, tk]N=(1, tk)+O(N-p), k=1, 2, ... A similar result holds for corresponding Fourier segments. © 1970 Springer-Verlag.
Frank R. Libsch, S.C. Lien
IBM J. Res. Dev
Maurice Hanan, Peter K. Wolff, et al.
DAC 1976
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
S.M. Sadjadi, S. Chen, et al.
TAPIA 2009