Shivashankar Subramanian, Ioana Baldini, et al.
IAAI 2020
Presentations are critical for communication in all areas of our lives, yet the creation of slide decks is often tedious and time-consuming. There has been limited research aiming to automate the document-to-slides generation process and all face a critical challenge: no publicly available dataset for training and benchmarking. In this work, we first contribute a new dataset, SciDuet, consisting of pairs of papers and their corresponding slides decks from recent years’ NLP and ML conferences (e.g., ACL). Secondly, we present D2S, a novel system that tackles the document-to-slides task with a two-step approach: 1) Use slide titles to retrieve relevant and engaging text, figures, and tables; 2) Summarize the retrieved context into bullet points with long-form question answering. Our evaluation suggests that long-form QA outperforms state-of-the-art summarization baselines on both automated ROUGE metrics and qualitative human evaluation.
Shivashankar Subramanian, Ioana Baldini, et al.
IAAI 2020
Kevin Gu, Eva Tuecke, et al.
ICML 2024
Gabriele Picco, Lam Thanh Hoang, et al.
EMNLP 2021
Hui Wan, Song Feng, et al.
NAACL 2021