Andrew Eddins, Tanvi Gujarati, et al.
APS March Meeting 2021
Quantum simulation on emerging quantum hardware is a topic of intense interest. While many studies focus on computing ground state properties or simulating unitary dynamics of closed systems, open quantum systems are a desirable target of study owing to their ubiquity and rich physical behavior. However, the non-unitary dynamics that makes these systems of interest is also difficult to simulate on near-term quantum hardware. Here, we report the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation using an adaptation of the quantum imaginary time evolution (QITE) algorithm. Our approach also allows the study of non-Markovian effects by simulation of time-convolutionless master equations and generalized master equations. We demonstrate our method through simulations of the spontaneous emission in the damped Jaynes-Cummings model on IBM quantum hardware. Our work demonstrates that the dynamics of open systems are accessible on near-term quantum hardware and without recourse to variational schemes.
*HK and AJM are supported by NSF Grant Number 183920.
Andrew Eddins, Tanvi Gujarati, et al.
APS March Meeting 2021
Jiri Stehlik, David Zajac, et al.
APS March Meeting 2021
Guglielmo Mazzola, Simon Mathis, et al.
APS March Meeting 2021
Pauline J. Ollitrault, Abhinav Kandala, et al.
PRResearch