Victor Wee Lin Ng, Xiyu Ke, et al.
Advanced Materials
Herein, we report reactive oxygen species (ROS)- and pH-responsive biodegradable polyethylene glycol (PEG)-block-polycarbonate by installing thioether groups onto the polycarbonate and its self-assembled core/shell structured micelles for anticancer drug delivery. Oxidation of thioethers to sulfoxide and subsequently sulfone induces an increase in hydrophilicity, resulting in more hydrophilic micellar core. This phase-change caused the micelles to swell and enhance cargo release. Carboxylic acid groups have also been installed onto thioether-containing polycarbonate to promote loading of amine-containing anticancer doxorubicin through electrostatic interaction. Urea-functionalized thioether-containing PEG-block-polycarbonates were synthesized to mix with the acid-functionalized PEG-block-polycarbonate for stabilizing micelle structure through hydrogen-bonding interaction. The mixed micelles were 50 nm in diameter and had a 25 wt% loading capacity for doxorubicin. Enhanced drug release from the micelles was triggered by low pH and high content of ROS. Drug-encapsulated micelles accumulated in tumors through leaky tumor vasculature in PC-3 human prostate cancer xenograft mouse model.
Victor Wee Lin Ng, Xiyu Ke, et al.
Advanced Materials
Julian M. W. Chan, Xiyu Ke, et al.
Chemical Science
Jiayu Leong, Chuan Yang, et al.
Biomaterials Science
Christoph Englert, Mareva Fevre, et al.
Polymer Chemistry