Graham Mann, Indulis Bernsteins
DIMEA 2007
We present a fast algorithm for approximate Canonical Correlation Analysis (CCA). Given a pair of tall-and-thin matrices, the proposed algorithm first employs a randomized dimensionality reduction transform to reduce the size of the input matrices, and then applies any standard CCA algorithm to the new pair of matrices. The algorithm computes an approximate CCA to the original pair of matrices with provable guarantees, while requiring asymptotically less operations than the state-of-the-art exact algorithms. Copyright 2013 by the author(s).
Graham Mann, Indulis Bernsteins
DIMEA 2007
Amit Anil Nanavati, Nitendra Rajput, et al.
MobileHCI 2011
Amol Thakkar, Andrea Antonia Byekwaso, et al.
ACS Fall 2022
Dimitrios Christofidellis, Giorgio Giannone, et al.
MRS Spring Meeting 2023