Evaluating question answering over linked data
Abstract
The availability of large amounts of open, distributed, and structured semantic data on the web has no precedent in the history of computer science. In recent years, there have been important advances in semantic search and question answering over RDF data. In particular, natural language interfaces to online semantic data have the advantage that they can exploit the expressive power of Semantic Web data models and query languages, while at the same time hiding their complexity from the user. However, despite the increasing interest in this area, there are no evaluations so far that systematically evaluate this kind of systems, in contrast to traditional question answering and search interfaces to document spaces. To address this gap, we have set up a series of evaluation challenges for question answering over linked data. The main goal of the challenge was to get insight into the strengths, capabilities, and current shortcomings of question answering systems as interfaces to query linked data sources, as well as benchmarking how these interaction paradigms can deal with the fact that the amount of RDF data available on the web is very large and heterogeneous with respect to the vocabularies and schemas used. Here, we report on the results from the first and second of such evaluation campaigns. We also discuss how the second evaluation addressed some of the issues and limitations which arose from the first one, as well as the open issues to be addressed in future competitions. © 2013 Elsevier B.V. All rights reserved.