Multi-view transfer learning with a large margin approach
Dan Zhang, Jingrui He, et al.
KDD 2011
The standardization and wider use of electronic medical records (EMR) creates opportunities for better understanding patterns of illness and care within and across medical systems. Our interest is in the temporal history of event codes embedded in patients'records, specifically investigating frequently occurring sequences of event codes across patients. In studying data from more than 1.6 million patient histories at the University of Michigan Health system we quickly realized that frequent sequences, while providing one level of data reduction, still constitute a serious analytical challenge as many involve alternate serializations of the same sets of codes. To further analyze these sequences, we designed an approach where a partial order is mined from frequent sequences of codes. We demonstrate an EMR mining system called EMRView that enables exploration of the precedence relationships to quickly identify and visualize partial order information encoded in key classes of patients. We demonstrate some important nuggets learned through our approach and also outline key challenges for future research based on our experiences. Copyright 2011 ACM.
Dan Zhang, Jingrui He, et al.
KDD 2011
Xiaokui Shu, Danfeng Yao, et al.
ACM TOPS
Rita Chattopadhyay, Jieping Ye, et al.
KDD 2011
Abbas Raza Ali
KDD 2011