Publication
HT 2013
Conference paper

Guided exploration and integration of urban data

View publication

Abstract

Governments and enterprises are interested in the return-on-investment for exposing their data. This brings forth the problem of making data consumable, with minimal effort. Beyond search techniques, there is a need for effective methods to identify heterogeneous datasets that are closely related, as part of data integration or exploration tasks. The large number of datasets demands a new generation of Smarter Systems for data content aggregation that allows users to incrementally liberate, access and integrate information, in a manner that scales in terms of gain for the effort spent. In the context of such a pay-as-you go system, we are presenting a novel method for exploring and discovering relevant datasets based on semantic relatedness. We are demonstrating a system for contextual knowledge mining on hundreds of real-world datasets from Dublin City. We evaluate our semantic approach, using query logs and domain expert judgments, to show that our approach effectively identifies related datasets and outperforms text-based recommendations. Copyright 2013 ACM.

Date

Publication

HT 2013

Authors

Share