Highly scalable graph search for the Graph500 Benchmark
Abstract
Graph500 is a new benchmark to rank supercomputers with a large-scale graph search problem. We found that the provided reference implementations are not scalable in a large distributed environment. We devised an optimized method based on 2D partitioning and other methods such as communication compression and vertex sorting. Our optimized implementation can handle BFS (Breadth First Search) of a large graph with 2 36 (68.7 billion vertices) and 2 40 (1.1 trillion) edges in 10.58 seconds while using 1366 nodes and 16,392 CPU cores. This performance corresponds to 103.9 GE/s. We also studied the performance characteristics of our optimized implementation and reference implementations on a large distributed memory supercomputer with a Fat-Tree-based Infiniband network. Copyright © 2012 ACM.