Aditya Malik, Nalini Ratha, et al.
CAI 2024
While AI planning and Reinforcement Learning (RL) solve sequential decision-making problems, they are based on different formalisms, which leads to a significant difference in their action spaces. When solving planning problems using RL algorithms, we have observed that a naive translation of the planning action space incurs severe degradation in sample complexity. In practice, those action spaces are often engineered manually in a domain-specific manner. In this abstract, we present a method that reduces the parameters of operators in AI planning domains by introducing a parameter seed set problem and casting it as a classical planning task. Our experiment shows that our proposed method significantly reduces the number of actions in the RL environments originating from AI planning domains.
Aditya Malik, Nalini Ratha, et al.
CAI 2024
Leonid Karlinsky, Joseph Shtok, et al.
CVPR 2019
Yannis Katsis, Maeda Hanafi, et al.
AAAI 2022
Girmaw Abebe Tadesse, William Ogallo, et al.
AAAI 2022