Impact of Incorporation Kinetics on Device Fabrication with Atomic Precision
Abstract
Scanning tunneling microscope lithography can be used to create nanoelectronic devices in which dopant atoms are precisely positioned in a Si lattice within approximately 1 nm of a target position. This exquisite precision is promising for realizing various quantum technologies. However, a potentially impactful form of disorder is due to incorporation kinetics, in which the number of P atoms that incorporate into a single lithographic window is manifestly uncertain. We present experimental results indicating that the likelihood of incorporating into an ideally written three-dimer single-donor window is 63±10% for room-temperature dosing, and corroborate these results with a model for the incorporation kinetics. Nevertheless, further analysis of this model suggests conditions that might raise the incorporation rate to near-deterministic levels. We simulate bias spectroscopy on a chain of comparable dimensions to the array in our yield study, indicating that such an experiment may help confirm the inferred incorporation rate.