Publication
Journal of Molecular Biology
Paper
Kinetic computational alanine scanning: Application to p53 oligomerization
Abstract
We have developed a novel computational alanine scanning approach that involves analysis of ensemble unfolding kinetics at high temperature to identify residues that are critical for the stability of a given protein. This approach has been applied to dimerization of the oligomerization domain (residues 326-355) of tumor suppressor p53. As validated by experimental results, our approach has reasonable success in identifying deleterious mutations, including mutations that have been linked to cancer. We discuss a method for determining the effect of mutations on the location of the dimerization transition state. © 2005 Elsevier Ltd. All rights reserved.