Conference paper
Attribute-based people search in surveillance environments
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
We propose a new approach for constructing mid-level visual features for image classification. We represent an image using the outputs of a collection of binary classifiers. These binary classifiers are trained to differentiate pairs of object classes in an object hierarchy. Our feature representation implicitly captures the hierarchical structure in object classes. We show that our proposed approach outperforms other baseline methods in image classification. © 2014 IEEE.
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Pavel Kisilev, Daniel Freedman, et al.
ICPR 2012
Sudeep Sarkar, Kim L. Boyer
Computer Vision and Image Understanding