Aditya Malik, Nalini Ratha, et al.
CAI 2024
Learning temporal causal graph structures from multivariate time-series data reveals important dependency relationships between current observations and histories, and provides a better understanding of complex systems. In this paper, we examine learning tasks where one is presented with multiple multivariate time-series, as well as a relational graph among the different time-series. We propose an L1 regularized hidden Markov random field regression framework to leverage the information provided by the relational graph and jointly infer more accurate temporal causal structures for all time-series. We test the proposed model on climate modeling and cross-species microarray data analysis applications. Copyright 2010 by the author(s)/owner(s).
Aditya Malik, Nalini Ratha, et al.
CAI 2024
Leonid Karlinsky, Joseph Shtok, et al.
CVPR 2019
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A