Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Statistical language modeling (LM) that purports to quantify the acceptability of a given piece of text has long been an interesting yet challenging research area. In particular, language modeling for information retrieval (IR) has enjoyed remarkable empirical success; one emerging stream of the LM approach for IR is to employ the pseudo-relevance feedback process to enhance the representation of an input query so as to improve retrieval effectiveness. This paper presents a continuation of such a general line of research and the main contribution is threefold. First, we propose a principled framework which can unify the relationships among several widely-used query modeling formulations. Second, on top of the successfully developed framework, we propose an extended query modeling formulation by incorporating critical query- specific information cues to guide the model estimation. Third, we further adopt and formalize such a framework to the speech recognition and summarization tasks. A series of empirical experiments reveal the feasibility of such an LM framework and the performance merits of the deduced models on these two tasks.
Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Hagen Soltau, Lidia Mangu, et al.
ASRU 2011
Diganta Misra, Muawiz Chaudhary, et al.
CVPRW 2024
Hans-Werner Fink, Heinz Schmid, et al.
Journal of the Optical Society of America A: Optics and Image Science, and Vision