Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
In this paper we examine the lexical substitution task for the medical domain. We adapt the current best system from the open domain, which trains a single classifier for all instances using delexicalized features. We show significant improvements over a strong baseline coming from a distributional thesaurus (DT). Whereas in the open domain system, features derived from WordNet show only slight improvements, we show that its counterpart for the medical domain (UMLS) shows a significant additional benefit when used for feature generation.
Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Hagen Soltau, Lidia Mangu, et al.
ASRU 2011
Diganta Misra, Muawiz Chaudhary, et al.
CVPRW 2024
Hans-Werner Fink, Heinz Schmid, et al.
Journal of the Optical Society of America A: Optics and Image Science, and Vision