D.D. Awschalom, J.-M. Halbout
Journal of Magnetism and Magnetic Materials
We report that symmetry breaking by a magnetic field can drastically increase the photoluminescence quantum yield of single-walled carbon nanotubes, by as much as a factor of 6, at low temperatures. To explain this we have developed a theoretical model based on field-dependent exciton band structure and the interplay of Coulomb interactions and the Aharonov-Bohm effect. This conclusively explains our data as the first experimental observation of dark excitons 5-10 meV below the bright excitons. © 2007 American Chemical Society.
D.D. Awschalom, J.-M. Halbout
Journal of Magnetism and Magnetic Materials
Elizabeth A. Sholler, Frederick M. Meyer, et al.
SPIE AeroSense 1997
H.D. Dulman, R.H. Pantell, et al.
Physical Review B
O.F. Schirmer, W. Berlinger, et al.
Solid State Communications