Attribute-based people search in surveillance environments
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
While the initial wave of in-memory key-value stores has been optimized for serving relatively fixed content to a very large number of users, an emerging class of enterprise-scale data analytics workloads focuses on capturing, analyzing, and reacting to data in real-time. At the same time, advances in network technologies are shifting the performance bottleneck from the network to the memory subsystem. To address these new trends, we present a bottom-up approach to building a high performance in-memory key-value store, Mercury, for both traditional, read-intensive as well as emerging workloads with high write-to-read ratio. Mercury's architecture is based on two key design principles: (i) economizing the number of DRAM accesses per operation, and (ii) reducing synchronization overheads. We implement these principles with a simple hash table with linked-list based chaining, and provide high concurrency with a fine-grained, cache-friendly locking scheme. On a commodity single-socket server with 12 cores, Mercury scales with number of cores and executes 14 times more queries/second than a popular hash-based key-value system, Memcached, for both read and write-heavy workloads. Copyright 2013 ACM.
Daniel A. Vaquero, Rogerio S. Feris, et al.
WACV 2009
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Pavel Kisilev, Daniel Freedman, et al.
ICPR 2012
Sudeep Sarkar, Kim L. Boyer
Computer Vision and Image Understanding