R.J. Gambino, N.R. Stemple, et al.
Journal of Physics and Chemistry of Solids
A series of dc magnetron-sputtered Co/Cu superlattices, with Co magnetic layers of ≈ 10 Å thickness and Cu spacer layer thicknesses in the range 10-400 Å, has been characterized by high-resolution electron microscopy. The multilayer structure was found to be polycrystalline with individual columnar grains spanning several bilayers. The grain size increased for Cu spacer layers of greater thickness, with a grain size of at least 3-4 bilayer periods being typical for multilayers with the thickest Cu layers (100-400 Å). In terms of the giant magnetoresistance (GMRC) exhibited by these metallic superlattices, these observations mean that conduction electron scattering at grain boundaries can, to a first approximation, be ignored in models for GMR dependence on Cu layer thickness. © 1994.
R.J. Gambino, N.R. Stemple, et al.
Journal of Physics and Chemistry of Solids
Ronald Troutman
Synthetic Metals
D.D. Awschalom, J.-M. Halbout
Journal of Magnetism and Magnetic Materials
Sharee J. McNab, Richard J. Blaikie
Materials Research Society Symposium - Proceedings