Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
We describe multi-objective influence diagrams, based on a set of p objectives, where utility values are vectors in Rp, and are typically only partially ordered. These can still be solved by a variable elimination algorithm, leading to a set of maximal values of expected utility. If the Pareto ordering is used this set can often be prohibitively large. We consider approximate representations of the Pareto set based on coverings, allowing much larger problems to be solved. In addition, we define a method for incorporating user tradeoffs, which also greatly improves the efficiency.
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Jun Wang, Yinglong Xia
UAI 2012