What is the state of our community?
Yong Rui, Ramesh Jain, et al.
MM 2005
We propose a neural network approach to benefit from the non-linearity of corpuswide statistics for part-of-speech (POS) tagging. We investigated several types of corpus-wide information for the words, such as word embeddings and POS tag distributions. Since these statistics are encoded as dense continuous features, it is not trivial to combine these features comparing with sparse discrete features. Our tagger is designed as a combination of a linear model for discrete features and a feed-forward neural network that captures the non-linear interactions among the continuous features. By using several recent advances in the activation functions for neural networks, the proposed method marks new state-of-the-art accuracies for English POS tagging tasks.
Yong Rui, Ramesh Jain, et al.
MM 2005
Rakesh Mohan, Ramakant Nevatia
IEEE Transactions on Pattern Analysis and Machine Intelligence
Xiaodan Song, Ching-Yung Lin, et al.
CVPRW 2004
Jia Cui, Yonggang Deng, et al.
ASRU 2009