Guillaume Buthmann, Tomoya Sakai, et al.
ICASSP 2025
Monte Carlo matrix trace estimation is a popular randomized technique to estimate the trace of implicitly-defined matrices via averaging quadratic forms across several observations of a random vector. The most common approach to analyze the quality of such estimators is to consider the variance over the total number of observations. In this paper we present a procedure to compute the variance of the estimator proposed in [W. Kong and G. Valiant, Spectrum estimation from samples, Ann. Statist. 45 2017, 5, 2218-2247] for the case of Gaussian random vectors and provide a sharper bound than previously available.
Guillaume Buthmann, Tomoya Sakai, et al.
ICASSP 2025
W.F. Cody, H.M. Gladney, et al.
SPIE Medical Imaging 1994
J. LaRue, C. Ting
Proceedings of SPIE 1989
Renu Tewari, Richard P. King, et al.
IS&T/SPIE Electronic Imaging 1996