Optimality of the Delaunay triangulation in ℝ d
Abstract
In this paper we present new optimality results for the Delaunay triangulation of a set of points in ℝ d . These new results are true in all dimensions d. In particular, we define a power function for a triangulation and show that the Delaunay triangulation minimizes the power function over all triangulations of a point set. We use this result to show that (a) the maximum min-containment radius (the radius of the smallest sphere containing the simplex) of the Delaunay triangulation of a point set in ℝ d is less than or equal to the maximum min-containment radius of any other triangulation of the point set, (b) the union of circumballs of triangles incident on an interior point in the Delaunay triangulation of a point set lies inside the union of the circumballs of triangles incident on the same point in any other triangulation of the point set, and (c) the weighted sum of squares of the edge lengths is the smallest for Delaunay triangulation, where the weight is the sum of volumes of the triangles incident on the edge. In addition we show that if a triangulation consists of only self-centered triangles (a simplex whose circumcenter falls inside the simplex), then it is the Delaunay triangulation. © 1994 Springer-Verlag New York Inc.