Charu C. Aggarwal
KDD 2002
The outlier detection problem has important applications in the field of fraud detection, network robustness analysis, and intrusion detection. Most such applications are high dimensional domains in which the data can contain hundreds of dimensions. Many recent algorithms use concepts of proximity in order to find outliers based on their relationship to the rest of the data. However, in high dimensional space, the data is sparse and the notion of proximity fails to retain its meaningfulness. In fact, the sparsity of high dimensional data implies that every point is an almost equally good outlier from the perspective of proximity-based definitions. Consequently, for high dimensional data, the notion of finding meaningful outliers becomes substantially more complex and non-obvious. In this paper, we discuss new techniques for outlier detection which find the outliers by studying the behavior of projections from the data set.
Charu C. Aggarwal
KDD 2002
Philip S. Yu, Daniel M. Dias
COMPSAC 1991
Charu C. Aggarwal, Philip S. Yu
SDM 2007
James Z. Wang, Zhidian Du, et al.
BIBM 2007