xLP: Explainable Link Prediction Demo
Balaji Ganesan, Srinivas Parkala, et al.
NeurIPS 2020
Physics-informed neutral networks (NN) are an emerging technique to improve spatial resolution and enforce physical consistency of data from physics models or satellite observations. A super-resolution (SR) technique is explored to reconstruct high resolution images (4x) from lower resolution images in an advection-diffusion model of atmospheric pollution plumes. SR performance is generally increased when the advection-diffusion equation constrains the NN in addition to conventional pixel-based constraints. The ability of SR techniques to also reconstruct missing data is investigated by randomly removing image pixels from the simulations and allowing the system to learn the content of missing data. Improvements in S/N of 11% are demonstrated when physics equations are included in SR with 40% pixel loss. Physics-informed NNs accurately reconstruct corrupted images and generate better results compared to the standard SR approaches.
Balaji Ganesan, Srinivas Parkala, et al.
NeurIPS 2020
Xiaodan Song, Ching-Yung Lin, et al.
CVPRW 2004
Kun Wang, Juwei Shi, et al.
PACT 2011
Benny Kimelfeld, Yehoshua Sagiv
ICDT 2013