Publication
NAACL 2018
Conference paper
Pieces of eight: 8-bit neural machine translation
Abstract
Neural machine translation has achieved levels of fluency and adequacy that would have been surprising a short time ago. Output quality is extremely relevant for industry purposes, however it is equally important to produce results in the shortest time possible, mainly for latency-sensitive applications and to control cloud hosting costs. In this paper we show the effectiveness of translating with 8-bit quantization for models that have been trained using 32-bit floating point values. Results show that 8-bit translation makes a non-negligible impact in terms of speed with no degradation in accuracy and adequacy.